Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167166, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38642480

RESUMO

BACKGROUND AND AIMS: Liver regeneration is essential for the preservation of homeostasis and survival. Bile acids (BAs)-mediated signaling is necessary for liver regeneration, but BAs levels need to be carefully controlled to avoid hepatotoxicity. We studied the early response of the BAs-fibroblast growth factor 19 (FGF19) axis in healthy individuals undergoing hepatectomy for living donor liver transplant. We also evaluated BAs synthesis in mice upon partial hepatectomy (PH) and acute inflammation, focusing on the regulation of cytochrome-7A1 (CYP7A1), a key enzyme in BAs synthesis from cholesterol. METHODS: Serum was obtained from twelve human liver donors. Mice underwent 2/3-PH or sham-operation. Acute inflammation was induced with bacterial lipopolysaccharide (LPS) in mice fed control or antoxidant-supplemented diets. BAs and 7α-hydroxy-4-cholesten-3-one (C4) levels were measured by HPLC-MS/MS; serum FGF19 by ELISA. Gene expression and protein levels were analyzed by RT-qPCR and western-blot. RESULTS: Serum BAs levels increased after PH. In patients with more pronounced hypercholanemia, FGF19 concentrations transiently rose, while C4 levels (a readout of CYP7A1 activity) dropped 2 h post-resection in all cases. Serum BAs and C4 followed the same pattern in mice 1 h after PH, but C4 levels also dropped in sham-operated and LPS-treated animals, without marked changes in CYP7A1 protein levels. LPS-induced serum C4 decline was attenuated in mice fed an antioxidant-supplemented diet. CONCLUSIONS: In human liver regeneration FGF19 upregulation may constitute a protective response from BAs excess during liver regeneration. Our findings suggest the existence of post-translational mechanisms regulating CYP7A1 activity, and therefore BAs synthesis, independent from CYP7A1/Cyp7a1 gene transcription.

2.
Biochem Pharmacol ; : 116166, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38527556

RESUMO

The liver plays a pivotal role in drug disposition owing to the expression of transporters accounting for the uptake at the sinusoidal membrane and the efflux across the basolateral and canalicular membranes of hepatocytes of many different compounds. Moreover, intracellular mechanisms of phases I and II biotransformation generate, in general, inactive compounds that are more polar and easier to eliminate into bile or refluxed back toward the blood for their elimination by the kidneys, which becomes crucial when the biliary route is hampered. The set of transporters expressed at a given time, i.e., the so-called transportome, is encoded by genes belonging to two gene superfamilies named Solute Carriers (SLC) and ATP-Binding Cassette (ABC), which account mainly, but not exclusively, for the uptake and efflux of endogenous substances and xenobiotics, which include many different drugs. Besides the existence of genetic variants, which determines a marked interindividual heterogeneity regarding liver drug disposition among patients, prevalent diseases, such as cirrhosis, non-alcoholic steatohepatitis, primary sclerosing cholangitis, primary biliary cirrhosis, viral hepatitis, hepatocellular carcinoma, cholangiocarcinoma, and several cholestatic liver diseases, can alter the transportome and hence affect the pharmacokinetics of drugs used to treat these patients. Moreover, hepatic drug transporters are involved in many drug-drug interactions (DDI) that challenge the safety of using a combination of agents handled by these proteins. Updated information on these questions has been organized in this article by superfamilies and families of members of the transportome involved in hepatic drug disposition.

3.
Biomed Pharmacother ; 174: 116439, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38518601

RESUMO

Triple-negative breast cancer (TNBC) is characterised by its aggressiveness and resistance to chemotherapy, demanding the development of effective strategies against its unique characteristics. Derived from lapacho tree bark, ß-lapachone (ß-LP) selectively targets cancer cells with elevated levels of the detoxifying enzyme NQO1. Hydroxytyrosol (HT) is a phenolic compound derived from olive trees with important anticancer properties that include the inhibition of cancer stem cells (CSCs) and metastatic features in TNBC, as well as relevant antioxidant activities by mechanisms such as the induction of NQO1. We aimed to study whether these compounds could have synergistic anticancer activity in TNBC cells and the possible role of NQO1. For this pourpose, we assessed the impact of ß-LP (0.5 or 1.5 µM) and HT (50 and 100 µM) on five TNBC cell lines. We demonstrated that the combination of ß-LP and HT exhibits anti-proliferative, pro-apoptotic, and cell cycle arrest effects in several TNBC cells, including docetaxel-resistant TNBC cells. Additionally, it effectively inhibits the self-renewal and clonogenicity of CSCs, modifying their aggressive phenotype. However, the notable impact of the ß-LP-HT combination does not appear to be solely associated with the levels of the NQO1 protein and ROS. RNA-Seq analysis revealed that the combination's anticancer activity is linked to a strong induction of endoplasmic reticulum stress and apoptosis through the unfolded protein response. In conclusion, in this study, we demonstrated how the combination of ß-LP and HT could offer an affordable, safe, and effective approach against TNBC.

4.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166926, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37956602

RESUMO

BACKGROUND: In intrahepatic cholestasis of pregnancy (ICP), there are elevated maternal serum levels of total bile acids, progesterone, and some sulfated metabolites, such as allopregnanolone sulfate, which inhibits canalicular function. AIM: To investigate the relationship between cholestasis and the expression of crucial enzymes involved in progesterone metabolism in the liver and placenta. METHODS: Obstructive cholestasis was induced by bile duct ligation (BDL). RT-qPCR (mRNA) and western blot (protein) were used to determine expression levels. Srd5a1 and Akr1c2 enzymatic activities were assayed by substrate disappearance (progesterone and 5α-dihydroprogesterone, respectively), measured by HPLC-MS/MS. RESULTS: BDL induced decreased Srd5a1 and Akr1c2 expression and activity in rat liver, whereas both enzymes were up-regulated in rat placenta. Regarding sulfotransferases, Sult2b1 was also moderately up-regulated in the liver. In placenta from ICP patients, SRD5A1 and AKR1C2 expression was elevated, whereas both genes were down-regulated in liver biopsies collected from patients with several liver diseases accompanied by cholestasis. SRD5A1 and AKR1C2 expression was not affected by incubating human hepatoma HepG2 cells with FXR agonists (chenodeoxycholic acid and GW4064). Knocking-out Fxr in mice did not reduce Srd5a1 and Akr1c14 expression, which was similarly down-regulated by BDL. CONCLUSION: SRD5A1 and AKR1C2 expression was markedly altered by cholestasis. This was enhanced in the placenta but decreased in the liver, which is not mediated by FXR. These results suggest that the excess of progesterone metabolites in the serum of ICP patients can involve both enhanced placental production and decreased hepatic clearance. The latter may also occur in other cholestatic conditions.


Assuntos
Colestase , Placenta , Gravidez , Humanos , Feminino , Camundongos , Ratos , Animais , Placenta/metabolismo , Progesterona/metabolismo , Espectrometria de Massas em Tandem , Fígado/metabolismo , Colestase/metabolismo
5.
Biomed Pharmacother ; 170: 116038, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141281

RESUMO

Cholangiocarcinomas (CCAs) are cancers originated in the biliary tree, which are characterized by their high mortality and marked chemoresistance, partly due to the activity of ATP-binding cassette (ABC) export pumps, whose inhibition has been proposed as a strategy for enhancing the response to chemotherapy. We have previously shown that ß-caryophyllene oxide (CRYO) acts as a chemosensitizer in hepatocellular carcinoma by inhibiting ABCB1, MRP1, and MRP2. Here, we have evaluated the usefulness of CRYO in inhibiting BCRP and improving the response of CCA to antitumor drugs. The TCGA-CHOL cohort (n = 36) was used for in silico analysis. BCRP expression (mRNA and protein) was assayed in samples from intrahepatic (iCCA) and extrahepatic (eCCA) tumors (n = 50) and CCA-derived cells (EGI-1 and TFK-1). In these cells, BCRP-dependent mitoxantrone transport was determined by flow cytometry. At non-toxic concentrations, CRYO inhibited BCRP function, which enhanced the cytostatic effect of drugs used in the treatment of CCA. The BCRP ability to confer resistance to a panel of antitumor drugs was determined in Chinese hamster ovary (CHO) cells with stable BCRP expression. At non-toxic concentrations, CRYO markedly reduced BCRP-induced resistance to known substrate drugs (mitoxantrone and SN-38) and cisplatin, gemcitabine, sorafenib, and 5-FU but not oxaliplatin. Neither CRYO nor cisplatin alone significantly affected the growth of BCRP-expressing tumors subcutaneously implanted in immunodeficient mice. In contrast, intratumor drug content was enhanced when administered together, and tumor growth was inhibited. In sum, the combined treatment of drugs exported by BCRP with CRYO can improve the response to chemotherapy in CCA patients.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Cricetinae , Humanos , Camundongos , Animais , Cisplatino/farmacologia , Mitoxantrona/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Células CHO , Resistencia a Medicamentos Antineoplásicos , Transportadores de Cassetes de Ligação de ATP , Proteínas de Neoplasias/metabolismo , Cricetulus , Antineoplásicos/farmacologia , Colangiocarcinoma/tratamento farmacológico , Linhagem Celular Tumoral
6.
Biomed Pharmacother ; 168: 115658, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37832404

RESUMO

BACKGROUND: Cholangiocarcinoma (CCA) is a highly lethal cancer originated in the biliary tree. Available treatments for CCA are scarcely effective, partly due to mechanisms of chemoresistance, such as aberrant activation of Wnt/ß-catenin pathway and dysfunctional p53. AIM: To evaluate the impact of enhancing the expression of negative regulators of the Wnt/ß-catenin pathway (AXIN1, AXIN2, and GSK3B) and the tumor suppressor gene TP53. METHODS: Gene expression in paired samples of CCA and adjacent non-tumor liver tissue was determined by RT-qPCR and immunohistochemistry (IHC). Using lentiviral vectors, CCA cells were transduced with genes of interest to assess their impact on the resistome (TLDA), apoptosis (annexin V/propidium iodide), and decreased cell viability (MTT). RESULTS: IHC revealed marked nuclear localization of ß-catenin, consistent with Wnt/ß-catenin pathway activation. In silico analysis with data from TCGA showed heterogeneous down-regulation of AXIN1, AXIN2, and GSK3B in CCA. Enhancing the expression of AXIN1, AXIN2, and GSK3B in CCA cells was not enough to block the activity of this signaling pathway or significantly modify resistance to 5-FU, gemcitabine, and platinated drugs. Consistent with impaired p53 function, CDKN1A was down-regulated in CCA. Forced TP53 expression induced p21 up-regulation and reduced cell proliferation. Moreover, the resistome was modified (FAS, BAX, TYMP, and CES2 up-regulation along with DHFR, RRM1, and BIRC5 down-regulation), which was accompanied by enhanced sensitivity to some antitumor drugs, mainly platinated drugs. CONCLUSION: Enhancing TP53 expression, but not that of AXIN1, AXIN2, and GSK3B, in CCA cells may be a useful strategy to sensitize CCA to antitumor drugs.


Assuntos
Antineoplásicos , Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Antineoplásicos/farmacologia , Via de Sinalização Wnt , Proliferação de Células , Linhagem Celular Tumoral , Ductos Biliares Intra-Hepáticos/metabolismo
7.
Biochem Pharmacol ; 217: 115812, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37722628

RESUMO

Impaired function of organic cation transporter 1 (OCT1) in hepatocellular carcinoma (HCC) has been associated with unsatisfactory response to sorafenib. However, some patients lacking OCT1 at the plasma membrane (PM) of HCC cells still respond to sorafenib, suggesting that another transporter may contribute to take up this drug. The aim of this study was to investigate whether OCT3 could contribute to the uptake of sorafenib and other tyrosine kinase inhibitors (TKIs) and whether OCT3 determination can predict HCC response to sorafenib. Cells overexpressing OCT3 were used to determine the ability of this carrier to transport sorafenib. Immunostaining of OCT3 was performed in HCC samples obtained in the TRANSFER study. Considering the intensity of staining and the number of OCT3-positive cells, tumors were classified as having absent, weak, moderate, or strong OCT3 expression and were also categorized according to the presence or absence of PM staining. Functional in vitro studies revealed that OCT3 is also able to mediate sorafenib uptake. Other TKIs, such as regorafenib, lenvatinib, and cabozantinib can also interact with this transporter. In silico studies suggested that the expression of OCT3 is better preserved in HCC than that of OCT1. In HCC samples, OCT3 was expressed at the PM of cancer cells, and its presence, detected in 26% of tumors, was associated with better outcomes in patients treated with sorafenib. In conclusion, analysis by immunohistochemistry of OCT3 in the PM of tumor cells may help to predict the response of HCC patients to sorafenib and potentially to other TKIs.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de Membrana Transportadoras , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico
8.
Diagn Progn Res ; 7(1): 18, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37697410

RESUMO

A lack of biomarkers that detect drug-induced liver injury (DILI) accurately continues to hinder early- and late-stage drug development and remains a challenge in clinical practice. The Innovative Medicines Initiative's TransBioLine consortium comprising academic and industry partners is developing a prospective repository of deeply phenotyped cases and controls with biological samples during liver injury progression to facilitate biomarker discovery, evaluation, validation and qualification.In a nested case-control design, patients who meet one of these criteria, alanine transaminase (ALT) ≥ 5 × the upper limit of normal (ULN), alkaline phosphatase ≥ 2 × ULN or ALT ≥ 3 ULN with total bilirubin > 2 × ULN, are enrolled. After completed clinical investigations, Roussel Uclaf Causality Assessment and expert panel review are used to adjudicate episodes as DILI or alternative liver diseases (acute non-DILI controls). Two blood samples are taken: at recruitment and follow-up. Sample size is as follows: 300 cases of DILI and 130 acute non-DILI controls. Additional cross-sectional cohorts (1 visit) are as follows: Healthy volunteers (n = 120), controls with chronic alcohol-related or non-alcoholic fatty liver disease (n = 100 each) and patients with psoriasis or rheumatoid arthritis (n = 100, 50 treated with methotrexate) are enrolled. Candidate biomarkers prioritised for evaluation include osteopontin, glutamate dehydrogenase, cytokeratin-18 (full length and caspase cleaved), macrophage-colony-stimulating factor 1 receptor and high mobility group protein B1 as well as bile acids, sphingolipids and microRNAs. The TransBioLine project is enabling biomarker discovery and validation that could improve detection, diagnostic accuracy and prognostication of DILI in premarketing clinical trials and for clinical healthcare application.

9.
Biomed Pharmacother ; 165: 115209, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37499450

RESUMO

The response of advanced hepatocellular carcinoma (HCC) to pharmacological treatments is unsatisfactory and heterogeneous. Inactivation of tumor suppressor genes (TSGs) by genetic and epigenetic events is frequent in HCC. This study aimed at investigating the impact of frequently altered TSGs on HCC chemoresistance. TSG alterations were screened by in silico analysis of TCGA-LIHC database, and their relationship with survival was investigated. These TSGs were silenced in HCC-derived cell lines using CRISPR/Cas9. TLDA was used to determine the expression of a panel of 94 genes involved in the resistome. Drug sensitivity, cell proliferation, colony formation and cell migration were assessed. The in silico study revealed the down-regulation of frequently inactivated TSGs in HCC (ARID1A, PTEN, CDH1, and the target of p53, CDKN1A). The presence of TP53 and ARID1A variants and the low expression of PTEN and CDH1 correlated with a worse prognosis of HCC patients. In PLC/PRF/5 cells, ARID1A knockout (ARID1AKO) induced increased sensitivity to cisplatin, doxorubicin, and cabozantinib, without affecting other characteristics of malignancy. PTENKO and E-CadKO showed minimal changes in malignancy, resistome, and drug response. In p53KO HepG2 cells, enhanced malignant properties and higher resistance to cisplatin, doxorubicin, sorafenib, and regorafenib were found. This was associated with changes in the resistome. In conclusion, the altered expression and function of several TSGs are involved in the heterogeneity of HCC chemoresistance and other features of malignancy, contributing to the poor prognosis of these patients. Individual identification of pharmacological vulnerabilities is required to select the most appropriate treatment for each patient.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Cisplatino/uso terapêutico , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Genes Supressores de Tumor , Resistência a Múltiplos Medicamentos , Fenótipo
10.
Biochem Pharmacol ; 214: 115681, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37429423

RESUMO

Although pharmacological treatment is the best option for most patients with advanced hepatocellular carcinoma (HCC), its success is very limited, partly due to reduced uptake and enhanced efflux of antitumor drugs. Here we have explored the usefulness of vectorizing drugs towards the organic anion transporting polypeptide 1B3 (OATP1B3) to enhance their efficacy against HCC cells. In silico studies (RNA-Seq data, 11 cohorts) and immunohistochemistry analyses revealed a marked interindividual variability, together with general downregulation but still expression of OATP1B3 in the plasma membrane of HCC cells. The measurement of mRNA variants in 20 HCC samples showed the almost absence of the cancer-type variant (Ct-OATP1B3) together with marked predominance of the liver-type variant (Lt-OATP1B3). In Lt-OATP1B3-expressing cells, the screening of 37 chemotherapeutical drugs and 17 tyrosine kinase receptors inhibitors (TKIs) revealed that 10 classical anticancer drugs and 12 TKIs were able to inhibit Lt-OATP1B3-mediated transport. Lt-OATP1B3-expressing cells were more sensitive than Mock parental cells (transduced with empty lentiviral vectors) to some Lt-OATP1B3 substrates (paclitaxel and the bile acid-cisplatin derivative Bamet-UD2), but not to cisplatin, which is not transported by Lt-OATP1B3. This enhanced response was abolished by competition with taurocholic acid, a known Lt-OATP1B3 substrate. Tumors subcutaneously generated in immunodeficient mice by Lt-OATP1B3-expressing HCC cells were more sensitive to Bamet-UD2 than those derived from Mock cells. In conclusion, Lt-OATP1B3 expression should be screened before deciding the use of anticancer drugs substrates of this carrier in the personalized treatment of HCC. Moreover, Lt-OATP1B3-mediated uptake must be considered when designing novel anti-HCC targeted drugs.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Transportadores de Ânions Orgânicos , Animais , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Cisplatino/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/genética , Humanos
11.
Cancers (Basel) ; 15(12)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37370755

RESUMO

Despite its often low efficacy and high toxicity, the standard treatment for acute myeloid leukemia (AML) is induction chemotherapy with cytarabine and idarubicin. Here, we have investigated the role of transporters and drug-metabolizing enzymes in this poor outcome. The expression levels (RT-qPCR) of potentially responsible genes in blasts collected at diagnosis were related to the subsequent response to two-cycle induction chemotherapy. The high expression of uptake carriers (ENT2), export ATP-binding cassette (ABC) pumps (MDR1), and enzymes (DCK, 5-NT, and CDA) in the blasts was associated with a lower response. Moreover, the sensitivity to cytarabine in AML cell lines was associated with ENT2 expression, whereas the expression of ABC pumps and enzymes was reduced. No ability of any AML cell line to export idarubicin through the ABC pumps, MDR1 and MRP, was found. The exposure of AML cells to cytarabine or idarubicin upregulated the detoxifying enzymes (5-NT and DCK). In AML patients, 5-NT and DCK expression was associated with the lack of response to induction chemotherapy (high sensitivity and specificity). In conclusion, in the blasts of AML patients, the reduction of the intracellular concentration of the active metabolite of cytarabine, mainly due to the increased expression of inactivating enzymes, can determine the response to induction chemotherapy.

12.
Cells ; 12(8)2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37190050

RESUMO

The poor prognosis of most cases of advanced cholangiocarcinoma (CCA) constitutes a severe problem in modern oncology, which is aggravated by the fact that the incidence of this liver cancer is increasing worldwide and is often diagnosed late, when surgical removal is not feasible. The difficulty of dealing with this deadly tumor is augmented by the heterogeneity of CCA subtypes and the complexity of mechanisms involved in enhanced proliferation, apoptosis avoidance, chemoresistance, invasiveness, and metastasis that characterize CCA. Among the regulatory processes implicated in developing these malignant traits, the Wnt/ß-catenin pathway plays a pivotal role. Alteration of ß-catenin expression and subcellular localization has been associated with worse outcomes in some CCA subtypes. This heterogeneity, which also affects cellular and in vivo models commonly used to study CCA biology and anticancer drug development, must be taken into account for CCA investigation to more accurately extrapolate basic laboratory research to the clinical situation. A better understanding of the altered Wnt/ß-catenin pathway in relationship with the heterogeneous forms of CCA is mandatory for developing novel diagnostic tools and therapeutic strategies for patients suffering from this lethal disease.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , beta Catenina/metabolismo , Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/patologia , Via de Sinalização Wnt , Ductos Biliares Intra-Hepáticos/patologia
13.
Hepatology ; 78(3): 878-895, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36745935

RESUMO

BACKGROUND AND AIMS: Alcohol-associated liver disease (ALD) accounts for 70% of liver-related deaths in Europe, with no effective approved therapies. Although mitochondrial dysfunction is one of the earliest manifestations of alcohol-induced injury, restoring mitochondrial activity remains a problematic strategy due to oxidative stress. Here, we identify methylation-controlled J protein (MCJ) as a mediator for ALD progression and hypothesize that targeting MCJ may help in recovering mitochondrial fitness without collateral oxidative damage. APPROACH AND RESULTS: C57BL/6 mice [wild-type (Wt)] Mcj knockout and Mcj liver-specific silencing (MCJ-LSS) underwent the NIAAA dietary protocol (Lieber-DeCarli diet containing 5% (vol/vol) ethanol for 10 days, plus a single binge ethanol feeding at day 11). To evaluate the impact of a restored mitochondrial activity in ALD, the liver, gut, and pancreas were characterized, focusing on lipid metabolism, glucose homeostasis, intestinal permeability, and microbiota composition. MCJ, a protein acting as an endogenous negative regulator of mitochondrial respiration, is downregulated in the early stages of ALD and increases with the severity of the disease. Whole-body deficiency of MCJ is detrimental during ALD because it exacerbates the systemic effects of alcohol abuse through altered intestinal permeability, increased endotoxemia, and dysregulation of pancreatic function, which overall worsens liver injury. On the other hand, liver-specific Mcj silencing prevents main ALD hallmarks, that is, mitochondrial dysfunction, steatosis, inflammation, and oxidative stress, as it restores the NAD + /NADH ratio and SIRT1 function, hence preventing de novo lipogenesis and improving lipid oxidation. CONCLUSIONS: Improving mitochondrial respiration by liver-specific Mcj silencing might become a novel therapeutic approach for treating ALD.


Assuntos
Hepatopatias Alcoólicas , Animais , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatias Alcoólicas/metabolismo , Fígado/metabolismo , Etanol/efeitos adversos , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Mitocondriais/metabolismo
14.
Nat Rev Gastroenterol Hepatol ; 20(7): 462-480, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36755084

RESUMO

Cholangiocarcinoma (CCA) is a rare malignancy that develops at any point along the biliary tree. CCA has a poor prognosis, its clinical management remains challenging, and effective treatments are lacking. Therefore, preclinical research is of pivotal importance and necessary to acquire a deeper understanding of CCA and improve therapeutic outcomes. Preclinical research involves developing and managing complementary experimental models, from in vitro assays using primary cells or cell lines cultured in 2D or 3D to in vivo models with engrafted material, chemically induced CCA or genetically engineered models. All are valuable tools with well-defined advantages and limitations. The choice of a preclinical model is guided by the question(s) to be addressed; ideally, results should be recapitulated in independent approaches. In this Consensus Statement, a task force of 45 experts in CCA molecular and cellular biology and clinicians, including pathologists, from ten countries provides recommendations on the minimal criteria for preclinical models to provide a uniform approach. These recommendations are based on two rounds of questionnaires completed by 35 (first round) and 45 (second round) experts to reach a consensus with 13 statements. An agreement was defined when at least 90% of the participants voting anonymously agreed with a statement. The ultimate goal was to transfer basic laboratory research to the clinics through increased disease understanding and to develop clinical biomarkers and innovative therapies for patients with CCA.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Neoplasias dos Ductos Biliares/terapia , Neoplasias dos Ductos Biliares/metabolismo , Colangiocarcinoma/etiologia , Colangiocarcinoma/terapia , Consenso , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia
15.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36768380

RESUMO

Hepatocellular carcinoma (HCC) is a primary liver tumor with high lethality and increasing incidence worldwide. While tumor resection or liver transplantation is effective in the early stages of the disease, the therapeutic options for advanced HCC remain limited and the benefits are temporary. Thus, novel therapeutic targets and more efficacious treatments against this deadly cancer are urgently needed. Here, we investigated the pathogenetic and therapeutic role of eukaryotic initiation factor 4A1 (eIF4A1) in this tumor type. We observed consistent eIF4A1 upregulation in HCC lesions compared with non-tumorous surrounding liver tissues. In addition, eIF4A1 levels were negatively correlated with the prognosis of HCC patients. In HCC lines, the exposure to various eIF4A inhibitors triggered a remarkable decline in proliferation and augmented apoptosis, paralleled by the inhibition of several oncogenic pathways. Significantly, anti-growth effects were achieved at nanomolar concentrations of the eIF4A1 inhibitors and were further increased by the simultaneous administration of the pan mTOR inhibitor, Rapalink-1. In conclusion, our results highlight the pathogenetic relevance of eIF4A1 in HCC and recommend further evaluation of the potential usefulness of pharmacological combinations based on eIF4A and mTOR inhibitors in treating this aggressive tumor.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , Prognóstico , Apoptose , Proliferação de Células , Linhagem Celular Tumoral
16.
Cells ; 11(24)2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36552746

RESUMO

Bile acid (BA) synthesis from cholesterol by hepatocytes is inhibited by inflammatory cytokines. Whether liver inflammation also affects BA side chain shortening and conjugation was investigated. In human liver cell lines (IHH, HepG2, and HepaRG), agonists of nuclear receptors including the farnesoid X receptor (FXR), liver X receptor (LXR), and peroxisome proliferator-activated receptors (PPARs) did not affect the expression of BA-related peroxisomal enzymes. In contrast, hepatocyte nuclear factor 4α (HNF4α) inhibition down-regulated acyl-CoA oxidase 2 (ACOX2). ACOX2 was repressed by fibroblast growth factor 19 (FGF19), which was prevented by extracellular signal-regulated kinase (ERK) pathway inhibition. These changes were paralleled by altered BA synthesis (HPLC-MS/MS). Cytokines able to down-regulate cholesterol-7α-hydroxylase (CYP7A1) had little effect on peroxisomal enzymes involved in BA synthesis except for ACOX2 and bile acid-CoA:amino acid N-acyltransferase (BAAT), which were down-regulated, mainly by oncostatin M (OSM). This effect was prevented by Janus kinase (JAK) inhibition, which restored BA side chain shortening and conjugation. The binding of OSM to the extracellular matrix accounted for a persistent effect after culture medium replacement. In silico analysis of four databases (n = 201) and a validation cohort (n = 90) revealed an inverse relationship between liver inflammation and ACOX2/BAAT expression which was associated with changes in HNF4α levels. In conclusion, BA side chain shortening and conjugation are inhibited by inflammatory effectors. However, other mechanisms involved in BA homeostasis counterbalance any significant impact on the serum BA profile.


Assuntos
Ácidos e Sais Biliares , Hepatite , Humanos , Espectrometria de Massas em Tandem , Colesterol/metabolismo , Citocinas , Inflamação
17.
Cancers (Basel) ; 14(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35884516

RESUMO

Neuropilin-1 (NRP1) is a transmembrane protein involved in numerous cellular functions which has had increasing interest from cancer researchers. Liver cancer and colorectal cancer (CRC) are two of the most frequent and deadly tumors with a complex pharmacological framework. Here, we assessed the prognostic, diagnostic and clinicopathological value of NRP1 in liver cancer and CRC patients. We searched PubMed, Scopus, Web of Science, Embase and Cochrane Library databases for articles evaluating the NRP1 correlation with survival parameters, tumor development or clinicopathological features. Hazard ratios and odds ratios with 95% confidence intervals were extracted or estimated by Parmar method and pooled to evaluate the overall effect size with STATA 16 software. Heterogeneity was analyzed by chi-square-based Q test and I2 statistic, along with meta-regression and subgroup analysis, and publication bias was assessed by funnel plot asymmetry and Egger's test. The study protocol was registered in PROSPERO (CRD42022307062). NRP1 overexpression was significantly correlated with lower survival in liver cancer patients and with tumor development in hepatocarcinoma patients, and was strongly correlated with an increased risk of vascular invasion in liver cancer and metastasis in CRC and liver tumors. These results support the role of NRP1 as a potential and useful biomarker in both types of cancer.

18.
Cancers (Basel) ; 14(14)2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35884584

RESUMO

Hepatobiliary, pancreatic, and gastrointestinal cancers account for 36% of the ten million deaths caused by cancer worldwide every year. The two main reasons for this high mortality are their late diagnosis and their high refractoriness to pharmacological treatments, regardless of whether these are based on classical chemotherapeutic agents, targeted drugs, or newer immunomodulators. Mechanisms of chemoresistance (MOC) defining the multidrug resistance (MDR) phenotype of each tumor depend on the synergic function of proteins encoded by more than one hundred genes classified into seven groups (MOC1-7). Among them, the efflux of active agents from cancer cells across the plasma membrane caused by members of the superfamily of ATP-binding cassette (ABC) proteins (MOC-1b) plays a crucial role in determining tumor MDR. Although seven families of human ABC proteins are known, only a few pumps (mainly MDR1, MRP1-6, and BCRP) have been associated with reducing drug content and hence inducing chemoresistance in hepatobiliary, pancreatic, and gastrointestinal cancer cells. The present descriptive review, which compiles the updated information on the expression of these ABC proteins, will be helpful because there is still some confusion on the actual relevance of these pumps in response to pharmacological regimens currently used in treating these cancers. Moreover, we aim to define the MOC pattern on a tumor-by-tumor basis, even in a dynamic way, because it can vary during tumor progression and in response to chemotherapy. This information is indispensable for developing novel strategies for sensitization.

19.
J Hepatol ; 77(4): 991-1004, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35750136

RESUMO

BACKGROUND & AIMS: Inflammation, particularly that mediated by bacterial components translocating from the gut to the liver and binding to toll-like receptors (TLRs), is central to cholestatic liver injury. The triggering receptor expressed on myeloid cells-2 (TREM-2) inhibits TLR-mediated signaling and exerts a protective role in hepatocellular injury and carcinogenesis. This study aims to evaluate the role of TREM-2 in cholestasis. METHODS: TREM-2 expression was analyzed in the livers of patients with primary biliary cholangitis (PBC) or primary sclerosing cholangitis (PSC), and in mouse models of cholestasis. Wild-type (WT) and Trem-2 deficient (Trem-2-/-) mice were subjected to experimental cholestasis and gut sterilization. Primary cultured Kupffer cells were incubated with lipopolysaccharide and/or ursodeoxycholic acid (UDCA) and inflammatory responses were analyzed. RESULTS: TREM-2 expression was upregulated in the livers of patients with PBC or PSC, and in murine models of cholestasis. Compared to WT, the response to bile duct ligation (BDL)-induced obstructive cholestasis or alpha-naphtylisothiocyanate (ANIT)-induced cholestasis was exacerbated in Trem-2-/- mice. This was characterized by enhanced necroptotic cell death, inflammatory responses and biliary expansion. Antibiotic treatment partially abrogated the effects observed in Trem-2-/- mice after BDL. Experimental overexpression of TREM-2 in the liver of WT mice downregulated ANIT-induced IL-33 expression and neutrophil recruitment. UDCA regulated Trem-1 and Trem-2 expression in primary cultured mouse Kupffer cells and dampened inflammatory gene transcription via a TREM-2-dependent mechanism. CONCLUSIONS: TREM-2 acts as a negative regulator of inflammation during cholestasis, representing a novel potential therapeutic target. LAY SUMMARY: Cholestasis (the reduction or cessation of bile flow) causes liver injury. This injury is exacerbated when gut-derived bacterial components interact with receptors (specifically Toll-like receptors or TLRs) on liver-resident immune cells, promoting inflammation. Herein, we show that the anti-inflammatory receptor TREM-2 dampens TLR-mediated signaling and hence protects against cholestasis-induced liver injury. Thus, TREM-2 could be a potential therapeutic target in cholestasis.


Assuntos
Colestase , Glicoproteínas de Membrana , Receptores Imunológicos , Ácido Ursodesoxicólico , Animais , Antibacterianos , Anti-Inflamatórios , Colestase/complicações , Inflamação , Interleucina-33 , Lipopolissacarídeos , Fígado , Glicoproteínas de Membrana/genética , Camundongos , Receptores Imunológicos/genética , Receptor Gatilho 1 Expresso em Células Mieloides , Ácido Ursodesoxicólico/farmacologia
20.
J Exp Clin Cancer Res ; 41(1): 183, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35619118

RESUMO

BACKGROUND: Cholangiocarcinoma (CCA) is still a deadly tumour. Histological and molecular aspects of thioacetamide (TAA)-induced intrahepatic CCA (iCCA) in rats mimic those of human iCCA. Carcinogenic changes and therapeutic vulnerabilities in CCA may be captured by molecular investigations in bile, where we performed bile proteomic and metabolomic analyses that help discovery yet unknown pathways relevant to human iCCA. METHODS: Cholangiocarcinogenesis was induced in rats (TAA) and mice (JnkΔhepa + CCl4 + DEN model). We performed proteomic and metabolomic analyses in bile from control and CCA-bearing rats. Differential expression was validated in rat and human CCAs. Mechanisms were addressed in human CCA cells, including Huh28-KRASG12D cells. Cell signaling, growth, gene regulation and [U-13C]-D-glucose-serine fluxomics analyses were performed. In vivo studies were performed in the clinically-relevant iCCA mouse model. RESULTS: Pathways related to inflammation, oxidative stress and glucose metabolism were identified by proteomic analysis. Oxidative stress and high amounts of the oncogenesis-supporting amino acids serine and glycine were discovered by metabolomic studies. Most relevant hits were confirmed in rat and human CCAs (TCGA). Activation of interleukin-6 (IL6) and epidermal growth factor receptor (EGFR) pathways, and key genes in cancer-related glucose metabolic reprogramming, were validated in TAA-CCAs. In TAA-CCAs, G9a, an epigenetic pro-tumorigenic writer, was also increased. We show that EGFR signaling and mutant KRASG12D can both activate IL6 production in CCA cells. Furthermore, phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme in serine-glycine pathway, was upregulated in human iCCA correlating with G9a expression. In a G9a activity-dependent manner, KRASG12D promoted PHGDH expression, glucose flow towards serine synthesis, and increased CCA cell viability. KRASG12D CAA cells were more sensitive to PHGDH and G9a inhibition than controls. In mouse iCCA, G9a pharmacological targeting reduced PHGDH expression. CONCLUSIONS: In CCA, we identified new pro-tumorigenic mechanisms: Activation of EGFR signaling or KRAS mutation drives IL6 expression in tumour cells; Glucose metabolism reprogramming in iCCA includes activation of the serine-glycine pathway; Mutant KRAS drives PHGDH expression in a G9a-dependent manner; PHGDH and G9a emerge as therapeutic targets in iCCA.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Animais , Aracnodactilia , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Carcinogênese/genética , Colangiocarcinoma/patologia , Contratura , Epigênese Genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Glucose , Glicina/metabolismo , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos , Fosfoglicerato Desidrogenase/genética , Proteômica , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Ratos , Serina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...